Accessing SMAP Data

Objectives

By the end of this exercise, you will be able to:

- Access SMAP data
- Visualize and analyze SMAP data

Outline

- 1. SMAP Data Background Information
 - a. SMAP Data Products
 - b. SMAP Data Product Summary
 - c. Product Configuration
 - d. Sites to Discover, Download, and Visualize SMAP Data
- 2. Downloading the Data for this Exercise
- 3. Analyzing the Data
 - a. Opening a SMAP File in Panoply
 - b. Extracting SMAP Soil Moisture Values

4. Part 1: SMAP Data Background Information

Part 1A: SMAP Data Products

Data Product Short Name	Description	Grid Resolution	Granule Extent		
L1A_Radar*	Parsed Radar Instrument Telemetry		Half Orbit		
L1A_Radiometer	Parsed Radiometer Instrument Telemetry		Half Orbit		
L1B_S0_LoRes*	Low Resolution Radar σ _o in Time Order	5x30 km (10 slices)	Half Orbit		
L1C_S0_HiRes*	High Resolution Radar σ_0 on Swath Grid	1 km	Half Orbit		
L1B_TB	Radiometer T _B in Time Order	39x47 km	Half Orbit		
L1C_TB	Radiometer T _B	36 km	Half Orbit		
L2_SM_A*	Radar Soil Moisture (includes Freeze-Thaw)	3 km	Half Orbit		
L2_SM_P	Radiometer Soil Moisture	36 km	Half Orbit		
L2_SM_AP*	Active-Passive Soil Moisture	9 km	Half Orbit		
L3_FT_A*	Daily Global Composite Freeze/Thaw State	3 km	North of 45° N		
L3_SM_A*	Daily Global Composite Radar Soil Moisture	3 km	Global		
L3_SM_P	Daily Global Composite Radiometer Soil Moisture	36 km	Global		
L3_SM_AP*	Daily Global Composite Active- Passive Soil Moisture	9 km	Global		
L4_SM	Surface & Root Zone Soil Moisture	9 km	Global		
L4_C	Carbon Net Ecosystem Exchange	9 km	North of 45° N		

^{*}Only available during the 2.5 months of radar operation (mid-April – July 7, 2015)

Part 1B: SMAP Data Product Summary

Data Product	Description	Grid Resolution	Algorithm Source
L1A_Radiometer	Radiometer Data in Time-Order	-	Mission DA
L1B_TB	Radiometer T _B in Time Order	39x47 km	Mission DA
L1C_TB	Radiometer T _B in Half-Orbits	36 km	Mission DA
L1C_TB_E	Radiometer T_B in Half-Orbits,	9 km	Mission DA
	Enhanced		
L2_SM_P	Soil Moisture (Radiometer)	36 km	Mission DA
L2_SM_P_E	Soil Moisture (Radiometer)	9 km	Mission DA
L2_SM_SP	Soil Moisture (Sentinel Radar +	3 km	Mission DA
	Radiometer)		
L3_FT_P	Soil Moisture (Radiometer)	36 km	Mission DA
L3_SM_P_E	Soil Moisture (Radiometer,	3 km	Mission DA
	Enhanced)		
L3_SM_P	Soil Moisture (Radiometer)	36 km	Mission DA
L3_SM_P_E	Soil Moisture (Radiometer,	9 km	Mission DA
	Enhanced)		
L4_SM	Soil Moisture (Surface and Root	9 km	Mission DA
	Zone)		
L4_C	Carbon Net Ecosystem Exchange (NEE)	9 km	Mission DA

Part 1C: Product Configuration

- All products are in HDF5 format
 - Each SMAP HDF5 file contains the primary data parameters (e.g. soil moisture, freeze/thaw, sensor data) and all data used in the production of those primary parameters. These files also include metadata, geolocation information, quality flags, etc.
- Projection: EASE-Grid 2.0
 - Equal-area projection
 - o Level 2, 3, 4, and radiometer L1C are in this projection
- Values
 - o Radiometer data (brightness temperature) is in Kelvin
 - \circ Radar data is in sigma naught (σ_o)
 - Soil moisture is a volumetric measurement expressed as cm³/cm³
 - o Freeze/thaw is a binary measurement, either frozen or thawed
 - Net ecosystem exchange is in grams of carbon/square meter per day

Part 1D: Sites to Discover, Download, and Visualize SMAP Data

National Snow and Ice Data Center (NSIDC): http://nsidc.org/data/smap

- Provides access to L1 radiometer data and all L2, L3, and L4 radiometer products
- Provides data access, dataset user guide documents, tools, news, published research, quality information, FAQs, and many other resources
- Direct access to SMAP data (with logins) through:
 - o HTTPS: https://n5eil01u.ecs.nsidc.org/SMAP/
- Subscribe here: http://nsidc.org/daac/subscriptions.html for an automatic delivery of data as it becomes available

Alaska Satellite Facility (ASF): http://www.asf.alaska.edu/smap/

- Only provides L1 radar data
- Provides data access, data set user guide documents, tools, news, published research, quality information, FAQs, and many other resources

Earthdata Search: http://search.earthdata.nasa.gov

- Allows you to search, order, and visualize all SMAP data
- You can perform a keyword, spatial, or temporal search
- Reformats, reprojects, and subsets services for most products

The HDF5 Group Support: http://support.hdfgroup.org/products/hdf5_tools/index.html

Allows you to access and visualize SMAP HDF5 data using Python, NCL, MATLAB®, and IDL®.

- Access HDF5 tools: http://support.hdfgroup.org/products/hdf5 tools/index.html
- Download code in Python, NCL, MATLAB®, and IDL®: http://hdfeos.org/zoo/index_openNSIDC_Examples.php#SMAP

Part 2: Download Data for This Exercise

- Go to http://hdfeos.org/zoo/index_openNSIDC_Examples.php#SMAP
- Click on SMAP_L3_SM_P_20150505_R12170_002.h5 next to Grid

SMAP Swath	SMAP_L1A_RADIOMETER_03721_D_20151013T000528_R11920_001.h5	Python	NCL	MATLAB	<u>IDL</u>	
	SMAP_L1B_TB_01367_A_20150505T001706_R11850_001.h5	Python	NCL	MATLAB	<u>IDL</u>	
	SMAP_L1C_TB_03721_D_20151013T000528_R11920_001.h5	Python	NCL	MATLAB	<u>IDL</u>	
		SMAP_L2_SM_P_03721_D_20151013T000528_R11920_601.h5	Python	NCL	MATLAB	<u>IDL</u>
	Grid	SMAP_L3_SM_P_20151012_R11920_001.h5	<u>Python</u>	NCL	MATLAB	<u>IDL</u>

Part 3: Analyzing the Data

Part 3A: Opening a SMAP File in Panoply

- Open Panoply
- Go to File > Open and open SMAP_L3_SM_P_20150505_R12170_002.h5
- The left window shows the archive structure, which has two folders: Metadata and Soil Moisture
- Double click on an archive to see the files within it

- Click on soil moisture to see the characteristics or metadata of the file in the right-hand window
- Open the file as a map by double-clicking on the soil moisture file

To see the pixel value, place the curser over the point of interest and click Alt

- Click on the tab option on the top that says Array to see the values in the file
- To save a file in a different format (e.g. .png, .tiff, .pdf), select File > Save As from the main menu

Part 3B: Extracting SMAP Soil Moisture Values

- Go to the U.S. Flood and Drought Monitor tool from Princeton University: http://stream.princeton.edu/CONUS4FDM/WEBPAGE/interface.php?locale=en
 - This is the most direct way to extract SMAP soil moisture values

- In the upper-right window, select Point Data
- In the next section under Time Interval, specify the period of interest that you would like: soil moisture
 - Note that SMAP soil moisture data is available as of mid-April 2015
- In the next section, select SMAP soil moisture and click on the map over your point of interest
 - You may also manually specify your latitude/longitude using the Manual Entry option
- Under Create Corresponding Data File select yes
- Click on **Download Data** at the very bottom
- The data are downloaded directly onto your computer as a text file
- From the same page, download SMAP soil moisture data as well as vegetation and/or meteorological data for the same point
- Plot them and explore any correlations

